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Recap: How can we prevent data races?

● Critical section – a section of code, or collection of 
operations, in which only one process shall be 
executing at a given time

● Mutual exclusion (Mutex) - mechanisms that ensure 
that only one person or process is doing certain things 
at one time (others are excluded)
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Recap: How can we prevent data races?

• Mutual Exclusion / Critical Section
• Combine multiple instructions as a chunk

• Let only one chunk execution runs

• Block other executions

Thread 1

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

Thread 2

Critical Section
edx = value

eax = counter

eax = edx + eax

counter = eax

No access to 
counter
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Recap: Mutual Exclusion through locks

• Lock
• Prevent others enter the critical section

• Unlock
• Release the lock, let others acquire the lock

• counter += value
• lock()
• edx = value;
• eax = counter;
• eax = edx + eax;
• counter = eax;
• unlock()
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Recap: Manual Spinlock (bad_lock)

• What will happen if we implement lock
• As bad_lock / bad_lock?

• bad_lock
• Wait until lock becomes 0 (loops if 1)
• And then, set lock as 1

• Because it was 0, we can set it as 1

• Others must wait!

• bad_unlock
• Just set *lock as 0

Can pass this if lock=0
Sets lock=1 to block others

Critical
Section

Sets lock=0 to release
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Recap: Why does bad_lock doesn’t work?

• There is a room for race condition!

Race condition may 
happen

LOAD

STORE
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Recap: Lock using xchg

• xchg_lock
• Use atomic ‘xchg’ instruction to 
• Load and store values atomically
• Set value to 1, and compare ret

• If 0, then you can acquire the lock
• If 1, lock as 1, you must wait

• xchg_unlock
• Use atomic ‘xchg’
• Set value to 0

• Do not need to check
• You are the only thread that runs in the
• Critical section..

Critical
Section
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Recap: Lock using test and set

• tts_xchg_lock

• Algorithm
• Wait until lock becomes 0
• After lock == 0

• xchg (lock, 1)
• This only updates lock = 1 if lock was 0

• Why xchg, why not *lock = 1 directly?
• while and xchg are not atomic
• Load/Store must happen at

• The same time!

Critical
Section
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Recap: Lock using cmpxchg_lock

• Cmpxchg_lock
• Use cmpxchg to set lock = 1

• Do not update if lock == 1

• Only write 1 to lock if lock == 0

• Xchg_unlock
• Use xchg_unlock to set lock = 0

• Because we have 1 writer and

• This always succeeds…

Critical
Section



9

Recap: Using hardware features smartly
• backoff_cmpxchg_lock(lock)

• Try cmpxchg
• If succeeded, acquire the lock.
• If failed

• Wait 1 cycle (pause) for 1st trial
• Wait 2 cycles for 2nd trial
• Wait 4 cycles for 3rd trial
• …
• Wait 65536 cycles for 17th trial..
• Wait 65536 cycles for 18th trial..

• https://en.wikipedia.org/wiki/Exponential_backoff

https://en.wikipedia.org/wiki/Exponential_backoff
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Recap: Summary

• Mutex is implemented with Spinlock
• Waits until lock == 0 with a while loop (that’s why it’s called spin)

• Naïve code implementation never works
• Load/Store must be atomic

• xchg is a “test and set” atomic instruction
• Consistent, however, many cache misses, slow!

• Lock cmpxchg is a ”test and test&set” atomic instruction
• But Intel implemented this as xchg… slow!

• We can implement test-and-test-and-set (tts) with while + xchg
• Faster!

• We can also implement exponential backoff to reduce contention
• Much faster! Faster Than pthread_mutex
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Other synchronization primitives
• We may want to have more than one thread/process to execute at 

same time

Producer
  while (1) {

produce an item;
    

lock();
insert(item to pool);
unlock();

   }

Consumer
   While (1) {

lock();
remove(item from pool);
unlock();

       consume the item;
}    
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How many producers/consumers can run at 
a given time?

Producer
  while (1) {

produce an item;
    

lock();
insert(item to pool);
unlock();

   }

Consumer
   While (1) {

lock();
remove(item from pool);
unlock();

       consume the item;
}    
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What we want!
• To be more efficient we want to be able to allow more than one 

producer/consumer, i.e., equal to the number of items that can be 
inserted into/removed from the pool

Producer
  while (1) {

produce an item;
    

lock();
insert(item to pool);
unlock();

   }

Consumer
   While (1) {

lock();
remove(item from pool);
unlock();

       consume the item;
}    
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Semaphore

A semaphore is like an integer, with three differences: 

When you create the semaphore, you can initialize its value to any integer, but after 
that the only operations you are allowed to perform are increment (increase by 
one) and decrement (decrease by one). You cannot read the current value of the 
semaphore. 

When a thread decrements the semaphore, if the result is negative, the thread 
blocks itself and cannot continue until another thread increments the semaphore. 

When a thread increments the semaphore, if there are other threads waiting, one 
of the waiting threads gets unblocked. 
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Semaphore operations

wait(S) {
while (S<=0);

  S--;
}

signal(S) {
   S++;

}
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Producers/consumers using Semaphores

Producer
  while (1) {

produce an item;
        

lock();
insert(item to pool);
unlock();

   }

Consumer
   While (1) {

lock();
remove(item from pool);
unlock();

       consume the item;
}    

Init: FULL = 0; EMPTY = N;
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Producers/consumers using Semaphores

Producer
  while (1) {

produce an item;
        

lock();
insert(item to pool);
unlock();

       signal(FULL);
   }

Consumer
   While (1) {

lock();
remove(item from pool);
unlock();

       consume the item;
}    

Init: FULL = 0; EMPTY = N;
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Producers/consumers using Semaphores

Producer
  while (1) {

produce an item;
        wait(EMPTY);

lock();
insert(item to pool);
unlock();

       signal(FULL);
   }

Consumer
   While (1) {

lock();
remove(item from pool);
unlock();

       consume the item;
}    

Init: FULL = 0; EMPTY = N;
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Producers/consumers using Semaphores

Producer
  while (1) {

produce an item;
        wait(EMPTY);

lock();
insert(item to pool);
unlock();

       signal(FULL);
   }

Consumer
   While (1) {
 

wait(FULL);
       lock();

remove(item from pool);
unlock();

       consume the item;
}    

Init: FULL = 0; EMPTY = N;
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Producers/consumers using Semaphores

Producer
  while (1) {

produce an item;
        wait(EMPTY);

lock();
insert(item to pool);
unlock();

       signal(FULL);
   }

Consumer
   While (1) {
 

wait(FULL);
       lock();

remove(item from pool);
unlock();

       signal(EMPTY);
       consume the item;
}    

Init: FULL = 0; EMPTY = N;
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Is Semaphore good for producers/consumers?

Need to know the size of buffer!

How to accommodate dynamic pool size?
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Revising Producers/consumers

Producer
  while (1) {

produce an item;
        wait(EMPTY);

lock(m);
insert(item to pool);
unlock(m);

       signal(FULL);
   }

Consumer
   While (1) {
 

wait(FULL);
       lock(m);

remove(item from pool);
unlock(m);

       signal(EMPTY);
       consume the item;
}    
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Revising Producers/consumers

Producer
  while (1) {

produce an item;
        wait till there is space in pool

lock(m);
insert(item to pool);
unlock(m);

       tell a waiting consumer
   }

Consumer
   While (1) {
 

wait till there is an item in pool
       lock(m);

remove(item from pool);
unlock(m);

       tell a producer that item has been removed
       consume the item;
}    
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Revising Producers/consumers

Producer
  while (1) {

produce an item;
        if (!pool.has_space) {
             We need to wait for consumer
        }

lock(m);
insert(item to pool);
unlock(m);

       tell a waiting consumer
   }

Consumer
   While (1) {
 

 if (pool.is_empty) {
             We need to wait for producer
        }
       lock(m);

remove(item from pool);
unlock(m);

       tell a waiting producer
       consume the item;
}    
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What's wrong?

Producer
  while (1) {

produce an item;
        if (!pool.has_space) {
             We need to wait for consumer
        }

lock(m);
insert(item to pool);
unlock(m);

       tell a waiting consumer
   }

Consumer
   While (1) {
 

 if (pool.is_empty) {
             We need to wait for producer
        }
       lock(m);

remove(item from pool);
unlock(m);

       tell a waiting producer
       consume the item;
}    
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What's wrong?

Producer
  while (1) {

produce an item;
        if (!pool.has_space) {
             We need to wait for consumer
        }

lock(m);
insert(item to pool);
unlock(m);

       tell a waiting consumer
   }

Consumer
   While (1) {
 

 if (pool.is_empty) {
             We need to wait for producer
        }
       lock(m);

remove(item from pool);
unlock(m);

       tell a waiting producer
       consume the item;
}    

Data Race  
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Lets move the lock up!

Producer
  while (1) {

produce an item;
lock(m);

        if (!pool.has_space) {
             We need to wait for consumer
        }

insert(item to pool);
unlock(m);

       tell a waiting consumer
   }

Consumer
   While (1) {
 

 lock(m);
if (pool.is_empty) {

             We need to wait for producer
        }

remove(item from pool);
unlock(m);

       tell a waiting producer
       consume the item;
}    
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What's wrong?

Producer
  while (1) {

produce an item;
lock(m);

        if (!pool.has_space) {
             We need to wait for consumer
        }

insert(item to pool);
unlock(m);

       tell a waiting consumer
   }

Consumer
   While (1) {
 

 lock(m);
if (pool.is_empty) {

             We need to wait for producer
        }

remove(item from pool);
unlock(m);

       tell a waiting producer
       consume the item;
}    

Producer may never 
get to run
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Lets release the lock and wait!

Producer
  while (1) {

produce an item;
lock(m);

        if (!pool.has_space) {
             unlock(m);
             We need to wait for consumer
             lock(m);
        }

insert(item to pool);
unlock(m);

       tell a waiting consumer
   }

Consumer
   While (1) {
 

 lock(m);
if (pool.is_empty) {
   unlock(m);

             We need to wait for producer
             lock(m);
        }

remove(item from pool);
unlock(m);

       tell a waiting producer
       consume the item;
}    
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Release, wait and reacquire

Producer
  while (1) {

produce an item;
lock(m);

        if (!pool.has_space) {
             unlock(m);
             We need to wait for consumer
             lock(m);
        }

insert(item to pool);
unlock(m);

       tell a waiting consumer
   }

Consumer
   While (1) {
 

 lock(m);
if (pool.is_empty) {
   unlock(m);

             We need to wait for producer
             lock(m);
        }

remove(item from pool);
unlock(m);

       tell a waiting producer
       consume the item;
}    

Release lock, waiting 
for a condition and 

acquire lock
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Condition Variable (CV)

Producer
  while (1) {

produce an item;
lock(m);

        if (!pool.has_space) {
             wait(full);
        }

insert(item to pool);
       signal(empty);

unlock(m);
   }

Consumer
   While (1) {
 

 lock(m);
if (pool.is_empty) {
   wait(empty);

        }
remove(item from pool);

       signal(full);
unlock(m);

       consume the item;
}    

unlock(m);
We need to wait for consumer

lock(m);

CV full; full->lock = m;
CV empty; empty->lock = m;
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Condition Variable operations

wait(S) {
    unlock(s->lock);
 block and add into s->queue
 lock(s->lock);  
}

signal(S) {
  unlock(s->lock);
 p = remove process from s->queue 
 unblock process p
 lock(s->lock);  
}
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Condition Variables

● Wait (condition)
● Block on “condition”

● Signal (condition)
● Wakeup one or more processes blocked on “condition”

● Conditions are like semaphores but: 
● signal is no-op if none blocked
● There is no counting!
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CVs for Ordering - Order 1
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CVs for Ordering - Order 2
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CVs for Ordering - Order 2

Not Initialized…
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CVs for Ordering

• Use locks and conditional 
variables to force a specific 
ordering…
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CVs for Ordering

• Use locks and conditional 
variables to force a specific 
ordering…

Waits for condition..
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CVs for Ordering

• Use locks and conditional 
variables to force a specific 
ordering…

Waits for condition..

Sends Signal..
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Wait free synchronization

● Can we ensure our programs run fine in presence of possible 
race conditions without explicitly using synchronization 
primitives (or waiting for critical section)?

● Root cause of Data races:
● Hint: Concurrent use of shared data.

● Can we make this safe?
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Wait free synchronization

● Design data structures in a way that allows safe concurrent 
accesses
● no mutual exclusion (lock acquire & release) necessary

● no possibility of deadlock

● Approach: use a single atomic operation to
● commit all changes

● move the shared data structure from one consistent state to another
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Simple queue insertion

QElem *queue;

void Insert(item) {

   QElem *new = malloc(sizeof(QElem));

   new->item = item;

   new->next = queue;

   queue = new;

}
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Simple queue insertion

typedef struct {
  QItem *item;
  QElem *next;
} QElem;

queue



44

Simple queue insertion

typedef struct {
  QItem *item;
  QElem *next;
} QElem;

new

queue
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Simple queue insertion

typedef struct {
  QItem *item;
  QElem *next;
} QElem;

new

queue
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Simple queue insertion

typedef struct {
  QItem *item;
  QElem *next;
} QElem;

queue

new
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Possible data races?

QElem *queue;

void Insert(item) {

   QElem *new = malloc(sizeof(QElem));

   new->item = item;

   new->next = queue;

   queue = new;

}
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Possible data races?

QElem *queue;

void Insert(item) {

   QElem *new = malloc(sizeof(QElem));

   new->item = item;

   new->next = queue;

   queue = new;

}

Data race



49

Simple queue insertion

typedef struct {
  QItem *item;
  QElem *next;
} QElem;

queue

new

new

Thread 1

Thread 2
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Simple queue insertion with xchg

QElem *queue;

void Insert(item) {

   QElem *new = malloc(sizeof(QElem));

   new->item = item;

   do {

          new->next = queue;

   } while (xchg(&queue, new) != new->next);

}
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Wait free synchronization

● Example only works for simple data structures where 
changes can be committed with one store instruction

● Complex data structures need synchronization
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Concurrency Bugs

Defects that occur because of not using or improperly using 
synchronization primitives.

● TOCTOU:
● Time of check to time of use
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TOCTOU
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TOCTOU

Write!

Read
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TOCTOU

Time-of-check-to-time-of-use bug

TOCTTOU

Write!

Read
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TOCTOU

Time-of-check-to-time-of-use bug

TOCTTOU

Time of check

Write!

Read
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TOCTOU

Time-of-check-to-time-of-use bug

TOCTTOU

Time of check

Time of use

Write!

Read
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TOCTOU

thd_proc_info was not NULL
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TOCTOU

thd_proc_info was not NULL

thd_proc_info becomes NULL
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TOCTOU

thd_proc_info was not NULL

thd_proc_info becomes NULL

Uh-oh
…
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Concurrency Bugs

● Deadlock:
● Two or more threads are waiting for the other to take 

some actions thus neither make any progress



62

Deadlocks

• Two or more threads are waiting for the other to take some actions 
thus neither make any progress
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Deadlocks

• Two or more threads are waiting for the other to take some actions 
thus neither make any progress
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Deadlocks

• Two or more threads are 
waiting for the other to take 
some actions thus neither 
make any progress

holds
Lock L1Thread 1
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Deadlocks

• Two or more threads are 
waiting for the other to take 
some actions thus neither 
make any progress

Thread 2

holds

wanted
by

Lock L1Thread 1
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Deadlocks

• Two or more threads are 
waiting for the other to take 
some actions thus neither 
make any progress

Lock L2 Thread 2

holds

holds

wanted
by

Lock L1Thread 1
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Deadlocks

• Two or more threads are 
waiting for the other to take 
some actions thus neither 
make any progress

Lock L2 Thread 2

holds

holds

wanted
by

wanted
by

Lock L1Thread 1
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Starvation v/s Deadlock
● Starvation vs. Deadlock

● Starvation: thread waits indefinitely
● Example, low-priority thread waiting for resources constantly in use by high-priority 

threads

● Deadlock: circular waiting for resources
● Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

Res 2Res 1

Threa
d
B

Wait
For

Wait
For

Owned
By

Owned
By

Threa
d
A
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Starvation v/s Deadlock
● Deadlock ⇒ Starvation but not vice versa

● Starvation can end (but doesn’t have to)
● Deadlock can’t end without external intervention
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Deadlocks can be hard to reason

set_t *set_intersection (set_t *s1, set_t *s2) {
set_t *rv = new set_t();
Mutex_lock(&s1->lock);
Mutex_lock(&s2->lock);
for(int i=0; i<s1->len; i++) {

if(set_contains(s2, s1->items[i])
set_add(rv, s1->items[i]);

Mutex_unlock(&s2->lock);
Mutex_unlock(&s1->lock);

}



71

Scenario 1: Any problem?

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setA, setB);
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Scenario 1: Any problem?

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setA, setB);

Mutex_lock(&setA->lock);
Mutex_lock(&setB->lock);

…
Mutex_unlock(&setB->lock);
Mutex_unlock(&setA->lock);

Mutex_lock(&setA->lock);
Mutex_lock(&setB->lock);

…
Mutex_unlock(&setB->lock);
Mutex_unlock(&setA->lock);
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Scenario 2: Any problem?

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setB, setA);
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Scenario 2: Any problem?

Thread 1:

rv = set_intersection(setA, setB);

Thread 2:

rv = set_intersection(setB, setA);

Deadlock!

Mutex_lock(&setA->lock);
Mutex_lock(&setB->lock);

Mutex_lock(&setB->lock);
Mutex_lock(&setA->lock);
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Modelling Deadlock
● Resources

● Resource types R
1
, R

2
, . . ., R

m

● CPU cycles, memory space, I/O devices, mutex

● Each resource type R
i
 has W

i
 instances

● Preemptable: can be taken away by scheduler, e.g. CPU

● Non-preemptable: cannot be taken away, to be released voluntarily,  e.g.,  mutex, disk, files, ...

● Each process utilizes a resource as follows:
● request 

● use 

● release
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Modelling Deadlock: 
Resource allocation graph
● A set of vertices V and a set of edges E

● V is partitioned into two types:
● P = {P

1
, P

2
, …, P

n
}, the set consisting of all the processes in the system

● R = {R
1
, R

2
, …, R

m
}, the set consisting of all resource types in the system

● request edge – directed edge P
1 
→ R

j

● assignment edge – directed edge R
j
 → P

i



77

Modelling Deadlock

● Process

● Resource type

● P
i
 requests instance of R

j

● P
i
 is holding an instance of R

j

P

i Rj

P

i Rj
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Cycle in resource allocation graph!?

● What happens if there is a cycle in the resource allocation 
graph?

A S

BR
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Is there a deadlock?
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Is there a deadlock?
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Is there a deadlock?
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Modelling Deadlocks Using 
Resource allocation graphs

● If graph contains no cycles ⇒ no deadlock

● If graph contains a cycle ⇒
● if only one instance per resource type, then deadlock

● if several instances per resource type, possibility of deadlock
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Necessary conditions for a deadlock

● Mutual exclusion
● Each resource instance is assigned to exactly one process

● Hold and wait
● Holding at least one and waiting to acquire more

● No preemption
● Resources cannot be taken away

● Circular chain of requests
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Necessary conditions for a deadlock

● Mutual exclusion
● Each resource instance is assigned to exactly one process

● Hold and wait
● Holding at least one and waiting to acquire more

● No preemption
● Resources cannot be taken away

● Circular chain of requests Program 
behavior

Resource 
nature
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Necessary conditions for a deadlock

● Mutual exclusion
● Each resource instance is assigned to exactly one process

● Hold and wait
● Holding at least one and waiting to acquire more

● No preemption
● Resources cannot be taken away

● Circular chain of requests

Eliminating any condition eliminates deadlock!

Program 
behavior

Resource 
nature
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Handling deadlock

1. Ignore the problem
● It is user’s fault

● used by most operating systems, including UNIX

2. Detection and recovery (by OS)
● Fix the problem afterwards

3. Dynamic avoidance (by OS & programmer)
● Careful allocation

4. Prevention (by programmer & OS)
● Negate one of the four conditions
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2. Detect and Recovery 

● Programmer does nothing

● Allow system to enter deadlock state 

● Run some detection algorithm
● E.g., build a resource graph to check for cycles

● Try to recover somehow
● E.g., reboot the machine
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3. Dynamic Avoidance 

Definition:

An algorithm that is run by the OS whenever a process 
requests resources, the algorithm avoids deadlock by denying 
or postponing the request 

if 

it finds that accepting the request could put      the system in 
an unsafe state (one where deadlock could occur). 
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3. Dynamic Avoidance 

● Requirement:
● each process declares the maximum number of resources of each 

type it may need

● Key idea:
● The deadlock-avoidance algorithm dynamically examines the 

resource-allocation state to ensure there can never be a deadlock 
condition

● No matter what future requests will be
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3. Dynamic Avoidance 

● Needs to know the entire set of tasks that must be run 
and the locks that they need

● Reduce concurrency

● Not used widely in practice
● E.g., used in embedded systems
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4. Preventing deadlock

● Mutual exclusion
● Each resource instance is assigned to exactly one process

● Hold and wait
● Holding at least one and waiting to acquire more

● No preemption
● Resources cannot be taken away

● Circular chain of requests

Eliminating any condition eliminates deadlock!
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Eliminating Circular Wait
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Eliminating Circular Wait
Lock variable is mostly a pointer, then
provide a correct order of having a lock

e.g.,
if(l1 > l2)  {

Mutex_lock(l1);
Mutex_lock(l2);

}
else {

Mutex_lock(l2);
Mutex_lock(l1);

}
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Summary 

● Need to be careful while using synchronization primitives

● Concurrency bugs: improper use of synchronization 
primitives


